Algebra 2 Semester 1 Final Exam Practice

Complete the following problems. Show all work. Calculator not permitted. Flashcards permitted.

1. Given the points $(-6,-3)$ and $(2,10)$.
a. Find the distance between the points.
b. Find the slope through these two points.
c. Find the equation of the line that goes through these two points.
d. Find three other points one the line through these two points.
2. Given the system of equations $3 x+2 y=8$ and $-2 x-5 y=-9$.
a. Solve the system of equations using elimination.
b. Solve the system of equations using substitution.
c. Write both equations in $y=m x+b$ form.
d. Graph the equations.
3. Evaluate if $g(x)=5 x-x^{2}$.
a. $g(-3)$
b. $g\left(\frac{2}{3}\right)$
c. $g(2 a+3)$
d. For what value(s) of x does $g(x)=-6$? Show your work.
4. Simplify each expression.
a. 2^{-3}
b. $64^{\frac{1}{3}}$
c. $\left(k^{3} h m^{\frac{3}{4}}\right)^{8}$
d. $\left(\frac{1}{216}\right)^{-\frac{3}{4}}$
e. $\left(9^{\frac{1}{2}}\right)^{-4}$
5. Multiply these polynomials:
a. Use the area model to multiply $(x+3)\left(x^{2}-4 x+7\right)$.
b. Multiply with the method of your choice: $(x+y)^{3}$.
6. Factor!
a. $2 x^{2}+7 x-4$
b. $12 x^{4}+36 x^{3}+15 x^{2}$
7. Multiplying and dividing rational expressions.
a. $\frac{3}{2} \bullet \frac{5}{7}$
b. $\frac{7}{5} \div \frac{8}{9}$
c. $\frac{x^{2}-x-30}{x^{2}+13 x+40} \cdot \frac{x^{2}+11 x+24}{x^{2}-9 x+18}$
d. $\frac{x^{2}-1}{x^{2}-6 x-7} \div \frac{x^{3}+x^{2}-2 x}{x-7}$
8. Adding and subtracting rational expressions.
a. $\frac{8}{11}-\frac{13}{5}$
b. $\frac{x+4}{x^{2}-3 x-28}-\frac{x-5}{x^{2}+2 x-35}$
9. Investigate the funciton $f(x)=-\sqrt{x+4}+1$.

9 b. Investigate the funciton $f(x)=2(x+3)^{2}+4$
9c. Investigate the funciton $f(x)=\frac{1}{x-3}+1$
9d. Investigate the funciton $f(x)=-1 / 4|x-5|+3$
10. Given the quadratic equation $y=x^{2}+4 x-12$.
a. What is the y-intercept?
b. What are the x -intercepts of this equation?
c. Write the equation in graphing form $y=a(x-h)^{2}+k$.
d. Graph it. Label.
11. Order of operations:
a. Simplify $(8-2)^{2} \div 6 \cdot 3+5-8 \cdot 2^{3}$.

b. Evaluate $-6^{2} \div 4 \cdot 2-\left(4^{2}+3^{2}\right)$.
12. Solve $2(4-2 x)-3(x+5)=-5 x-2$. Show all of your work clearly.
13. Darren was tossing a ball and he noticed that the path of the ball was a parabola, so he quickly took measurements. The highest point the ball reached was 5 feet and it landed 6 feet from where he was standing. Sketch a graph and write an equation that describes the path of the ball. Be sure that your variables are clearly defined or labeled on your graph.
6. Consider the inequality $7 x-23 \leq 72$
a. Find at least five x-values that make the inequality true.
b. How many solutions are there?
c. Find and name the boundary point. What is its relationship with the inequality?
d. Write an inequality that represents the solution for x. On a number line, highlight the solutions for x.
7. Graph the system of inequalities below on one set of axes.
i. $y<-\frac{2}{3} x-3$
ii. $y \geq-\frac{5}{2} x+6$
a. Is the boundary line for each inequality included in the solution? Explain.
b. Which points are solutions to this system?
c. Verify your solution region algebraically. Be sure to check each inequality and show your work.
d. How can you be sure this region is the only set of points that makes both inequalities true?
8. a. Find the equation of the radical (yes it is shown below, SHOW WORK). State the domain and range.
b. Find the equation of the other function. State the domain and
 range.
c. Solve $\frac{5}{3}|x-2|-2=-\frac{3}{2} \sqrt{x+4}+5$.
d. Solve $y=\frac{5}{3}|x-2|-2$

$$
y=-\frac{3}{2} \sqrt{x+4}+5
$$

e. What is the difference between the answer to c and d? Explain why this is so.
f. Solve $\frac{5}{3}|x-2|-2<-\frac{3}{2} \sqrt{x+4}+5$.
g. Solve $\frac{5}{3}|x-2|-2 \geq-\frac{3}{2} \sqrt{x+4}+5$.

For problems $\mathrm{h}-\mathrm{k}$, solve by shading the appropriate region.
h. $y \leq \frac{5}{3}|x-2|-2$
i. $\quad y \leq \frac{5}{3}|x-2|-2$
$y \geq-\frac{3}{2} \sqrt{x+4}+5$

j. $y \geq \frac{5}{3}|x-2|-2$
$y \geq-\frac{3}{2} \sqrt{x+4}+5$

$y \leq-\frac{3}{2} \sqrt{x+4}+5$

k. $\quad y \geq \frac{5}{3}|x-2|-2$

$$
y \leq-\frac{3}{2} \sqrt{x+4}+5
$$

Vocabulary: Make sure that you can DEFINE and GIVE AN EXAMPLE of each of these.
asymptote
equation
independent variable
investigating a function
dependent variable
function
infinity
situation
domain
graph
input
symmetry
output
x -> y table
range
y-intercept
compress
even function
graphing form
odd function
piecewise function
Standard Form (quadratic function)
transformation
vertex
dilation
function
(h, k)
parameter
range
step function translation
vertex form
coefficient
equivalent
exponent
function
polynomial
rewrite
term
domain general equation horizontal shift parent graph reflection stretch factor variable vertical shift
constant term equation expression Giant One rational expression simplify
closed set
difference of squares
excluded value
factor
least common denominator
rational function
substitution

